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ABSTRACT

The tropical belt is expected to expand in response to global warming, although most of the observed

tropical widening since 1980, especially in the Northern Hemisphere, is believed to have mainly originated

from natural variability. The view is of a small global warming signal relative to natural variability. Here we

focus on the question whether and, if so when, the anthropogenic signal of tropical widening will become

detectable. Analysis of two large ensemble climate simulations reveals that the forced signal of tropical width

is strongly constrained by the forced signal of globalmean temperature.Under a representative concentration

pathway 8.5 (RCP8.5) emissions scenario, the aggregate of the twomodels indicates a regression of about 0.58
lat 8C21 during 1980–2080. The models also reveal that interannual variability in tropical width, a measure of

noise used herein, is insensitive to global warming. Reanalysis data are therefore used to constrain the in-

terannual variability, whose magnitude is estimated to be 1.18 latitude. Defining the time of emergence (ToE)

for tropical width change as the first year (post-1980) when the forced signal exceeds the magnitude of in-

terannual variability, the multimodel simulations of CMIP5 are used to estimate ToE and its confidence

interval. The aforementioned strong constraint between the signal of tropical width change and global mean

temperature change motivates using CMIP5-simulated global mean temperature changes to infer ToE. Our

best estimate for the probable year for ToE, under an RCP8.5 emissions scenario, is 2058 with 10th–90th

percentile confidence of 2047–68. Various sources of uncertainty in estimating the ToE are discussed.

1. Introduction

There is medium to high confidence that the tropics

have expanded since about 1980, with an estimated 70–

200-mi poleward shift (1mi’ 1.61 km) occurring in each

hemisphere (Wuebbles et al. 2017). While most metrics

used to define the tropical edge indicated an expansion,

uncertainties exist principally with regard to the rate of

tropical expansion during the recent 30-yr record, with

different magnitudes found among various datasets and

metrics of the tropical edge (e.g., Davis and Rosenlof

2012; Quan et al. 2014; Lucas et al. 2014).

Notwithstanding the uncertainty in how much the

tropics have actually expanded, model-based inve-

stigations have explored whether the tropical widening

since about 1980 is symptomatic of a warming world

(e.g., Lu et al. 2007). Results from historical simulations
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of phases 3 and 5 of the CoupledModel Intercomparison

Project (CMIP) show a comparatively smaller rate

of expansion associated with anthropogenic climate

change than the magnitude of change observed (e.g.,

Johanson and Fu 2009; Hu et al. 2013; Vallis et al. 2015).

It is therefore unlikely that most or even a substantial

fraction of the observed tropical expansion of recent

decades has resulted from human-induced climate

change (e.g., Quan et al. 2014; Garfinkel et al. 2015;

Allen and Kovilakam 2017). Internal atmospheric vari-

ability and decadal tropical SST variability related to El

Niño–Southern Oscillation (ENSO) can explain dis-

crepancies in magnitudes between the strong observed

tropical expansion of recent decades and the weaker

anthropogenic change–induced expansion in coupled

model simulations (Garfinkel et al. 2015; Allen and

Kovilakam 2017).

The current study seeks to understand when the cli-

mate change signal of tropical edge change is likely to

emerge relative to the magnitude of interannual vari-

ability (herein defined to be the noise) in annual tropical

width. We specifically inquire when an altered location

of the tropical edge due to anthropogenic forcing be-

comes sufficiently prominent so as to mark, at least

conceptually, the dawn of an altered climate state con-

cerning tropical extent.

We apply formal time of emergence (ToE) analysis

methods (following Hawkins and Sutton 2012) to esti-

mate when a tropical width change will be detectable.

The method of ToE has been applied to studies of

change in a wide variety of geophysical conditions in-

cluding droughts (e.g., Orlowsky and Seneviratne 2013),

catchment hydrology (Addor et al. 2014), regional sea

level (Lyu et al. 2015), ocean biogeochemistry (Keller

et al. 2014), daily temperature extremes (Scherer and

Diffenbaugh 2014; Harrington et al. 2016), and regional

temperature and precipitation change (Lehner et al.

2017) to name a few. This is the first study to apply such

formal methods in estimating the likely date of Hadley

cell widening. We use a late twentieth-century period

as a reference for emergent change in order to align with

many previous studies on the Hadley cell that employed

1980 as the beginning point of tropical widening (e.g.,

Hu and Fu 2007; Seidel and Randel 2007; Johanson and

Fu 2009; Birner 2010; Davis and Rosenlof 2012; Quan

et al. 2014; Allen and Kovilakam 2017), motivated in

large part by the availability of modern reanalyses that

make diagnosis of factors determining variability in

tropical width feasible. It should be recognized, how-

ever, that the ToE will be different if using an earlier

reference period. Indeed, it is possible that inception of

an altered tropical belt may have already occurred when

viewed from a preindustrial era reference, but the late

twentieth century is arguably a more relevant reference

to employ from an adaptation perspective of current

society. Owing to observational limitations, empirical

estimates of the ToE based on changes relative to pe-

riods appreciably preceding the modern reanalysis pe-

riod are not expected to be reliable.

To estimate the ToE of the climate change–induced

tropical expansion we use a variety of coupled ocean–

atmospheric model simulations. As described further in

section 2, these include two large ensembles of coupled

ocean–atmosphere model experiments and an ensemble

of single runs of the multimodel experiments from

CMIP5 (Taylor et al. 2012). Analogous to Hawkins and

Sutton (2012), the ToE is defined as the first year in

which the magnitude of anthropogenically forced

change in the tropical edge exceeds the magnitude of

interannual variability. Section 3 presents an analysis of

tropical widening occurring in the two large ensembles

and explores especially the relationship between the

rate of tropical expansion and the rate of global mean

temperature rise. Section 4 calculates the probable ToE

for the human-induced signal of tropical widening using

the multimodel CMIP5 simulations. Drawing on the

relation between the forced signal in tropical width and

the forced signal of global mean temperature derived

from the large ensemble experiments and using obser-

vational data to constrain the magnitude of interannual

variability, the probable year of emergence and its 10th–

90th percentile confidence interval is derived. A sum-

mary and discussion are provided in section 5.

2. Data and method

a. Observations

Reanalysis products are used to describe variability

in tropical width during 1980–2016, including ERA-

Interim (Dee et al. 2011), JRA-55 (Kobayashi et al.

2015), MERRA (Rienecker et al. 2011), andMERRA-2

(Gelaro et al. 2017). Two indicators for the location of

the tropical width are diagnosed for annual mean con-

ditions. One is the poleward-most latitude at which

zonally averaged precipitation P equals zonally aver-

aged evaporation E, and the other is the zero-crossing

latitude of the zonal-mean meridional streamfunction

at 500 hPa C500. Results based on those two indicators

are intercompared, and we note that Davis and Birner

(2017) found very similar CMIP5-projected tropical belt

trends when using the zero-crossing latitudes of C500

and vertically averaged C, respectively. The numerical

method for calculating these from the reanalyses is de-

scribed in Davis and Rosenlof (2012), and the annually

averaged mass streamfunction is calculated using the
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annual averaged wind fields. Figure 1 of Quan et al.

(2014) provides a schematic of the spatial relation of

each indicator with various climatological features of

the zonally averaged climate.

Observed global mean surface temperature is derived

from the Goddard Institute for Space Studies (GISS)

Surface Temperature Analysis (GISTEMP; GISTEMP

Team 2016; Hansen et al. 2010), whereas sea surface

temperature diagnosis is derived from the Hurrell et al.

(2008) analysis.

b. Coupled climate model simulations

Two large ensemble coupled ocean–atmosphere

model simulations are diagnosed. The NCAR Commu-

nity Earth System Model Large Ensemble (CESM-LE;

Kay et al. 2015) consists of 40 members spanning

1920–2100. The atmospheric component of CESM-LE

[Community Atmosphere Model, version 5 (CAM5)]

employs a finite-volume scheme for its dynamical core

with spatial resolution of 0.98 3 1.258 and 30 vertical

levels from surface to near 3 hPa. Time-evolving speci-

fied radiative forcings include greenhouse gases [e.g.,

CO2,CH4,NO2,O3, and chlorofluorocarbons (CFCs)],

aerosols, and solar and volcanic aerosols. External forc-

ing after 2005 follows a representative concentration

pathway 8.5 (RCP8.5) protocol. The Second Generation

Canadian Earth System Model (CanESM2; Arora et al.

2011; Sigmond and Fyfe 2016; Kushner et al. 2018) con-

sists of a 50-member ensemble spanning 1950–2100. The

atmospheric component of CanESM2 [Fourth Genera-

tion Canadian Atmospheric General Circulation Model

(CanAM4)] is a spectral model employing spectral T63,

triangular truncation at wavenumber 63 (;2.88 latitude–
longitude), spatial resolution, and 35 vertical levels from

the surface to 1hPa. Natural and historical forcing in the

CanESM2 experiments for 1950–2005 include variability

in greenhouse gases, tropospheric and stratospheric

aerosols, ozone, land use, and solar variability, while an

RCP8.5 protocol is used for radiative forcing after 2005 as

in the CESM simulations.

To increase the sample of model configurations, we

also use data from the first member of each of 35 dif-

ferent models contributing to CMIP5 experiments.

This ensemble of multiple models includes single runs

of CanESM2 and CESM-LE. Each member of these

transient coupled model runs is subject to the same

radiative forcing as the large ensemble coupled model

simulations with historical forcing prior to 2005 and an

RCP8.5 scenario thereafter.

The forcings used in the experiments studied herein

follow the CMIP5 protocol (http://cmip-pcmdi.llnl.gov/

cmip5/forcing.html), although there are some differ-

ences in treatments (e.g., specifying emissions rather

than concentrations for some chemical species in

Earth system models). Ozone forcing as used in the

CMIP5 models is described in Eyring et al. (2013). For

CanESM2, two additional 50-member ensemble simu-

lations are examined in which single forcings are applied

involving stratospheric ozone only and anthropogenic

aerosols only, respectively [for further details of these

experiments see Gillett et al. (2013) and Banerjee et al.

2017)].

c. Time of emergence

We define ToE for tropical width change as the year

when the signal S of forced change in tropical width first

exceeds the magnitude of noise N. The approach is

analogous to Hawkins and Sutton (2012), with the

principal difference being that noise against which the

forced signal is compared is derived from statistics of

total interannual variability, rather than from an esti-

mate of the internal component of the variability such as

might be based on the calculation of interannual vari-

ability relative to a detrended time series or from an

independent set of preindustrial control experiments.

The N as computed herein is thus a combination of in-

ternal and external components of the interannual var-

iability. The main reason for using the total interannual

variability for describing N rather than the internal

component alone is that only the former can be esti-

mated from observations, and thus only the former can

be used to constrain the models. Section 4 addresses

observational constraints on total interannual variability

of tropical width and reveals that the total interannual

variability is roughly 5% greater than the internal

component alone (as estimated from the large ensemble

simulations). As such, results for estimating the ToE are

not particularly affected by the aforementioned options

in defining N.

Uncertainties in the ToE can be estimated by vari-

ous methods. For example, comparing values based on

S/N . 1 versus S/N . 2, comparing ToE derived from

our two different large ensemble simulations, comparing

the statistics of ToE estimated from the multimodel

ensemble of CMIP5 simulations, and/or by comparing

ToE derived from different RCP assumptions for future

climate change.

To diagnose the magnitude of time-varying forced

signals in our two large ensembles, the method of

Liebmann et al. (2010) is used, which involves con-

structing two-dimensional parameter diagrams. To il-

lustrate, Fig. 1 shows such a diagram for time-varying

trends of annually averaged global mean surface tem-

perature (GMST) during 1950–2017. Every possible

trend (having at least a 10-yr duration) is calculated

using linear regression by least squares fit. Columns in

15 SEPTEMBER 2018 QUAN ET AL . 7227

http://cmip-pcmdi.llnl.gov/cmip5/forcing.html
http://cmip-pcmdi.llnl.gov/cmip5/forcing.html


the parameter diagram display trends over various

lengths for a fixed end year—all trends ending in 2017

are plotted at the far right in each panel of Fig. 1. Rows

in the parameter diagram display trends of a fixed length

for various end years—all 10-yr duration trends for end

years ranging from 1959 to 2017 are plotted at the top in

each panel of Fig. 1. The plotted values are the tem-

perature trend (8Cyr21) multiplied by the length of

segment, with the longest duration trend (67 yr) plotted

in the bottom right of the parameter diagram. Figure 1

reveals the well-known observed global warming (Fig. 1,

left), with a total increase since 1950 (ending in 2017) of

about 0.98C. The trends in ensemble means of the two

experiments also reveal warming, with the 1950–2017

temperature increase being slightly less than observed

in CESM-LE (0.88C; Fig. 1, center) and considerably

greater than observed in CanESM2 (1.38C; Fig. 1, right).

3. ToE of tropical width change in two large
ensemble simulations

Tropical width trends using the mass streamfunction

metric are shown in Fig. 2 for CESM-LE and CanESM2.

The two-dimensional parameter diagrams (Fig. 2, top)

show a tropical widening for all trend segments begin-

ning in 1980 (hypotenuse). A progressively greater

widening for longer periods is indicative of a quasi-

linear scaling of tropical width change with global

warming, as will be discussed further in section 4. For

1980–2017, CESM-LE total tropical widening is ap-

proximately 0.58 latitude compared to almost double

that occurring in CanESM2, in line with the simulated

approximately 0.88C global warming in CESM-LE com-

pared to approximately 1.38C warming in CanESM2

(see Fig. 1). Indeed, when evaluated with the simulated

noise in each model, the externally forced signal begins

exceeding the noise (one standardized departure of

interannual variability) at about 2020 in CanESM2,

whereas the signal does not emerge from the noise

until about 2060 for CESM-LE (see hatching in Fig. 2,

top).

Shown in the middle and bottom panels of Fig. 2 are

time series of total tropical width for each ensemble

member (solid gray) of CESM-LE and CanESM2. Their

time evolution is compared to a mean tropical width

(solid black) and the plus one standard deviation of in-

terannual variability (dashed blue), each derived using a

1980–2010 reference period. Box-and-whisker plots are

shown at 10-yr intervals in order to summarize the sta-

tistics of trends for progressively later end years, all

relative to a 1980 beginning. The two factors that de-

termine time of emergence are evident in these plots,

both of which differ between the models. First, as al-

ready evident from the two-dimensional parameter di-

agrams, the magnitude of forced change in tropical

width is greater in CanESM2 compared to CESM-LE.

Second, the magnitude of interannual variability is less

in CanESM2 (0.88 latitude) compared to CESM-LE

(1.28 latitude). These differences each serve to acceler-

ate the ToE in CanESM2 relative to CESM-LE.

These principal findings concerning ToE using a mass

streamfunction metric for tropical width are largely

reproduced using a P2 E5 0 latitude crossing analysis.

Results from the latter, shown in Fig. 3, again demon-

strate a progressive tropical widening with time, but

with a much earlier ToE in CanESM2 compared to

CESM-LE simulations. We find significant correlation

between trends in tropical width based on the two indices

(see Fig. S1 in the supplemental material), with a some-

what stronger relationship between them in CanESM2

than in CESM1. The agreement in tropical width trends

calculated using these two indices is similar to that

FIG. 1. Changes in annually averagedGMST (8C) based on linear trend calculation as a function of length of time segment and end year

for the period 1950–2017. Shown are values for observations (left) GISTEMP and large ensemble climate simulations of (center) CESM-

LE and (right) CanESM2. Changes calculated for individual ensemble members are averaged for center and right panels.
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found among the same indices in Quan et al. (2014) but

based on a different coupled model, and is also similar

to the relationship between a mass streamfunction in-

dicator and the latitude of the maximum surface

westerlies as examined in Vallis et al. (2015). In the

subsequent analysis of section 4 where observational

data are used to constrain tropical width variability and

multimodel CMIP5 experiments are introduced, the

mass streamfunction index of tropical width is used.

4. Constraining the ToE

The CanESM2 and CESM-LE experiments yield

significantly different ToE for the tropical widening

signal. Availability of large ensembles for both models

reveals that the differences are structural rather than

due to sampling. These structural differences arise from

two conflating factors: 1) a stronger signal (larger S) of

forced tropical widening, and 2) a weaker magnitude for

interannual variability (smallerN) of the tropical belt in

CanESM2 versus CESM-LE. The ToE therefore occurs

roughly 40 years earlier in CanESM2, prompting the

questions which (if any) of the two estimates is more

realistic, and whether the difference between them rea-

sonably measures the uncertainty in ToE.

Taking further advantage of the large ensembles, we

explore constraints that might be applied to ToE in or-

der to reduce, or at least better quantify, the uncertainty

in its estimate. Concerning the first factor, we examine

in Fig. 4 the statistical linkages between dynamic and

thermodynamic responses to external radiative forc-

ing. Shown are scatterplots of the ensemble-averaged

FIG. 2. (top) Changes in annually averaged tropical width (8 lat) based on linear trend calculations as a function of
length of time segment and end year for the period 1980–2080. Shown are average values for large ensemble climate

simulations of (left) CESM-LE and (right) CanESM2. Hatched areas indicate values that are larger than ensemble-

averaged std dev calculated over the period 1980–2010. (middle),(bottom) Simulated temporal evolutions of the

annual-mean tropical width from 1980 to 2080. Gray lines indicate time series of all ensemblemembers for (middle)

CESM-LE and (bottom) CanESM2. The long horizontal solid line in each plot shows the 1980–2010 mean tropical

width value. The long horizontal dashed blue line in each plot indicates ensemblemean plus one 1980–2010 std dev,

which is the same value used in the top panels for hatching. Box-and-whisker plots (in red) illustrate changes to date

above the 1980–2010 mean of the model ensemble that are calculated based on trend analysis for all segments

beginning in 1980. Solid lines represent ensemble mean, and boxes and whiskers represent 10% and 90% ranks

and max and min change values, respectively.
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tropical width versus global mean surface temperature

using annual data from 1980–2080. Both models exhibit

similar and strong relationships between low-frequency

variations in their signals of tropical width and GMST

with correlations of about 0.9 (see also Amaya et al.

2018). The regression relationships between tropical

width and GMST during 1980–2080 as a whole are also

similar, though not identical for the two models. The

values of 0.428 and 0.558 lat 8C21 in CESM-LE and

CanESM2, respectively, indicate tropical width change

to be strongly constrained by global surface temperature

change. The two values are within the range of prior

estimates of the rate of annual-mean Hadley cell widen-

ing as a function of GMST. For instance, a 0.458 lat 8C21

sensitivity is found in climate simulations spanning the

Last Glacial Maximum to the end of the twenty-first

century (Son et al. 2018), a 0.68 lat 8C21 sensitivity occurs

in an idealized general circulation model (Frierson et al.

2007), and the synthesis of CMIP5 projections in Vallis

et al. (2015) indicate about 0.58 lat 8C21.

A cautionary point is that Vallis et al.’s (2015) analysis

of single runs from different CMIP5 models found that

the magnitude of Hadley cell expansion was not well

correlated with the magnitude of GMST responses (see

their Fig. 21). Their results imply that GMST does not

serve as a strong constraint on tropical width, at least

when viewed across models. However, our results reveal

considerable sampling noise in tropical width trends

FIG. 3. As in Fig. 2, but the tropical width is determined from the P 2 E 5 0 metric of tropical width.

FIG. 4. Simulated annually averaged tropical width values as

a function ofGMST for the period 1980–2080. Shown are ensemble-

mean values for each year (dots) together with respective regression

line for CESM-LE (blue) and CanESM2 (red).
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among single runs of the large ensemble experiments

derived from the same model (see Fig. 2). It is thus

possible that the scatter relation of trends from single

runs of multiple models may be unrepresentative of

forced signal sensitivities. As supporting evidence, we

find little correlation between Hadley cell expansion

versus GMST change [for the 70-yr period 2006–75 ex-

amined in Vallis et al. (2015)] when using individual

members of our large ensemble simulations (Fig. S2 in

the supplemental material). We reconcile this finding

(and also reconcile the Vallis et al. finding) with the

contrary indication for a strong constraint based on the

ensemble-mean diagnosis (Fig. 4) by invoking the over-

whelming influence of sampling noise on tropical width

variability among individual runs.

Concerning the second factor in which the magnitude

of interannual variability of the tropical belt in

CanESM2 is about 30% weaker than in CESM-LE, we

use reanalysis products to estimate the observed in-

terannual variability of tropical width. Figure 5 (top)

FIG. 5. (top) PDF determined from ensemble values of 1980–2010 std dev of annual-mean

tropical width in CanESM2 (red) and CESM-LE (blue). Red and blue ticks at bottom represent

individual model ensemble members. The four black ticks represent reanalysis values. (bottom)

Standard deviations of annual-mean tropical width for moving 30-yr windows calculated over the

1980–2080 period for two largemodel ensembles. For CESM-LE, light blue asterisks show values

for each individual run, and the blue line shows the average of the ensemble member values in

each 30-yr window. Corresponding values for CanESM2 are shown in orange and red.
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compares 4 different reanalysis products (black tick

marks) against the statistics of interannual variability in

CESM-LE (PDF in blue) and CanESM2 (PDF in red)

during 1980–2010. It is evident that the reanalyses are in

overall better agreement with CESM-LE statistics and

that the CanESM2 interannual variability in tropical

width is almost certainly too weak (which contributes

to a premature ToE). We further find this measure of

noise to be largely insensitive to radiative forcing during

1980–2080 as revealed by the absence of meaningful

trends in the time series of 30-yr moving interannual

variability (Fig. 5, bottom). This result provides justifi-

cation for using reanalysis products of the recent ob-

servational record to constrain the magnitude of

interannual variability simulated in themodels. The four

estimates range from 0.978 to 1.238 latitude, and here we

use their simple average (1.098 latitude). By comparison,

the magnitude of interannual variability in tropical

width is 1.158 and 0.858 latitude in CESM-LE and Can-

ESM2, respectively, during 1980–2010. In the case of the

large ensemble simulations, we also estimate the in-

ternal component of the interannual variability, whose

values are 1.148 and 0.808 latitude in CESM-LE and

CanESM2, respectively, during 1980–2010. Thus, most

of the total variability in the interannual location of

tropical edges is due to internal noise of the coupled

ocean–atmosphere system. The imposed observational

constraint on total variability is thereby not materially

different from constraining the internal component

alone (though the internal component cannot be

readily derived from the observational data).

To summarize, the results lead to the following as-

sumptions regarding constraints on the ToE: The signal

of tropical width change scales with the magnitude of

global warming at a rate 0.498 lat 8C21 and the noise

based on themagnitude of total interannual variability is

1.098 latitude. Thus, for a signal-to-noise ratio larger

than one (S/N . 1), the ToE would correspond to the

first year when the anthropogenically forced GMST

signal exceeds 2.28C (above a 1980 reference). Note that

using N based on the magnitude of the internal vari-

ability component only slightly changes the required

GMST threshold (by less than 5% to ;2.18C in our

analysis of the CESM-LE and CanESM2 models).

Figure 6 shows times series of GMST for each member

of CanESM2 (Fig. 6, top), each member of CESM-LE

(Fig. 6, middle), and each single run of the 35 different

CMIP5 model (Fig. 6, bottom). Gray bands illustrate

the span of time between the first member of the en-

semble exceeding 2.28C and the last member exceeding

2.28C.
The results shown in Fig. 7 are then the outcome of

translating the model temperature trend information

into equivalent ToE under the aforementioned as-

sumptions. Shown are PDFs for the three different

ensembles: CanESM2 (red), CESM-LE (blue), and

CMIP5 (black). Thick tickmarks indicate themean ToE

for each distribution, and the corresponding thin tick

marks show the 10th- and 90th-percentile ranges. It is

evident that CanESM2’s ToE is an extreme early oc-

currence relative to the multimodel statistics, whose

mean value is outside the 10th percentile of CMIP5

statistics. This much earlier ToE is a consequence of

its larger projected warming magnitude. Note that

had the bias in the noise component of CanESM2’s

tropical belt variability not been constrained as per

observations, the ToE would have been an additional

quarter century earlier. By contrast, and perhaps

coincidentally, the ToE estimated from the CESM-

LE is nearly identical to the mean estimate derived

from the CMIP5 ensemble. This is perhaps un-

expected since the CESM1 transient climate re-

sponse (TCR) of 2.338C is on the higher end of the

very likely range of roughly 18–38C based on models

contributing to the IPCC Fourth Assessment Report

(IPCC 2013).

The statistics of ToE based on the multimodel CMIP5

ensemble (Fig. 7, PDF in black) indicates themost likely

ToE is near about 2058, with 10th and 90th percentiles of

2047 and 2068, respectively. It is evident that the spread

of this distribution is principally a consequence of dif-

ferent GMST sensitivities of the individual models

rather than due to sampling noise. This is clearly illus-

trated by the fact that the mean ToE for the two large

ensembles differs more from each other than the spread

of each PDF associated with internal variability alone.

Given that the extent of the tropical belt is strongly

constrained by GMST, and given a temporally invariant

noise of Hadley cell variability, it follows that the un-

certainty in the ToE estimated here must principally

reflect uncertainty in TCR. This would be true whether

ToE is based on a threshold exceedance of S/N . 1 or

S/N. 2. For the latter higher threshold, GMST would

need to eclipse 4.48C, and there are few if any model

simulations among any of the ensembles studied

herein that achieve such warming before 2080 under

the RCP8.5 scenario (see Fig. 6). Thus, our results

indicate that ToE for tropical width change would

occur after 2080 for the more stringent detectability

requirement S/N . 2.

Finally, it is worth noting some implications of dif-

ferent RCP scenarios for ToE. Under RCP2.6 emis-

sions, GMST do not exceed the 2.28C threshold (relative

to a 1980 reference) throughout the integrations of the

twenty-first century (IPCC 2013), indicating the tropical

belt would be unlikely to change beyond the typical
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range of interannual variability. For an RCP6.0 sce-

nario, sufficient warming occurs in projections for the

latter half of the twenty-first century (IPCC 2013) to also

yield an emergent tropical widening signal (for S/N. 1)

but delayed by approximately a quarter century to

roughly 2080.

5. Summary and discussion

a. Summary

The time of emergence (ToE) of the human-induced

signal of tropical belt widening has been estimated using

large ensemble climate simulations together with his-

torical observations to constrain model projections. We

applied formal methods of ToE analysis to suites of

large ensemble climate simulations and provided, for

the first time, an estimate of the likely date when tropical

width change will become detectable. We defined ToE

for tropical width change as the first year (post-1980)

when the forced signal S exceeded the magnitude of

noise N measured by interannual variability of tropical

belt fluctuations. Analysis of two large ensemble climate

simulations revealed the forced signal of tropical width

to be strongly controlled by the forced signal of global

mean temperature. Under anRCP8.5 emissions scenario,

the aggregate of the two models indicated a regression

relationship of about 0.58 lat 8C21 during 1980–2080 in

agreement with several independent estimates of Hadley

cell sensitivity to global warming. The large ensemble

simulations also revealed that interannual variability in

FIG. 7. PDF of estimated ToE based on the projected future

changes for CanESM2 (red), CESM-LE (blue), andCMIP5models

(black). For each model ensemble, the long thick vertical ticks at

the bottom indicate corresponding ensemble mean, and short thin

ticks represent the corresponding 10% and 90% percentile values.

FIG. 6. Changes in annually averagedGMST values in (top) CanESM2, (middle) CESM-LE,

and (bottom) the 36 climate models of CMIP5. The changes are relative to the annual-mean

value of 1980 for each of the individual runs. Shaded gray areas indicate the range of ToE for

which changes in theGMSTbegins to exceed 2.28C indicated by the thin black horizontal line in

each panel (see text for further explanations).
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tropical width, a measure of intrinsic noise, is mostly in-

sensitive to global warming. Four different modern re-

analysis products were thus used to constrain the noise,

whose magnitude was estimated to be 1.098 latitude.
Our best estimate of the probable year for ToE (rel-

ative to 1980), under an RCP8.5 emissions scenario and

for S/N . 1 was 2058, with a 10th–90th percentile con-

fidence range of 2047–68. The results were derived by

using the multimodel simulations of CMIP5, convolving

each model’s projected temperature trend with the

aforementioned regression relation, using the observa-

tionally derived interannual variability in the tropical

belt to constrain the noise, and calculating the equiva-

lent ToE for each model. The CMIP5 multimodel runs

were shown to provide a more reliable estimate of the

ToE than using large ensembles of single models and

also to yield a more representative measure of un-

certainty. The uncertainty in ToE of tropical width, for a

particular RCP emission scenario, was shown to be de-

termined by the uncertainty in transient climate re-

sponse (TCR) among CMIP5 models. Given the strong

constraint on ToE by the magnitude of global warming,

results further indicated that a change in tropical width

would emerge about 25 years later (2080) under an

RCP6.0 scenario, while no emergent change in the

Hadley cell extent would occur in the twenty-first cen-

tury under an RCP2.6 scenario.

b. Discussion

A source of uncertainty in ToE concerns the sensi-

tivity of the Hadley cell to global mean surface tem-

perature change. While we found the forced signal of

tropical width to be strongly constrained by GMST in

each of two large ensembles, the regressions differed in

magnitude with a 30% greater sensitivity in CanESM2

than CESM-LE. The implied uncertainty in the GMST

warming threshold required for detection of tropical

width change is thus 2.08 and 2.68C if using the CanESM2

and CESM-LE regressions, respectively. As such, the

most probable year for ToE is 2054 and 2066 based on

these two particular values of Hadley cell–GMST re-

lationships. The range between these two estimates, de-

rived from our two large ensemble simulations, is within

the sampling range of Hadley cell sensitivity to global

temperature found in other studies using differentmodels

and forcings. It would be premature to argue that the full

range of Hadley cell sensitivities to GMST is currently

known. Nonetheless, our results are suggestive that un-

certainty in the ToE for tropical width change has two

comparable sources: one the uncertainty in magnitude of

Hadley cell–GMST relationships and the other un-

certainty in GMST sensitivity to greenhouse gas (GHG)

forcing.

Until a more robust quantification for the uncertainty

in the Hadley cell sensitivity to global warming becomes

available, it should be recognized that the 10th–90th

percentile range for ToE presented herein is almost

certainly too small. For instance, the 10th percentile

value for ToE, as an indication for the earliest plausi-

ble emergence of a tropical widening signal (under

RCP8.5), would be 2043 if using the CanESM2’s high

sensitivity, and 2054 if using the CESM-LE low sensi-

tivity. Such a difference of about a decade is smaller,

however, than those arising from assuming an RCP8.5

versus RCP6.0 scenario, and much smaller than differ-

ences from requiring a S/N. 2 versus S/N. 1. It should

also be noted that the ToE for tropical width change

may depend on the metric used to define tropical edge

location. Although our analysis using a dynamical in-

dicator (C500) yielded similar rates of change to that

based on a hydrological indicator (P 2 E) in CanESM2

and CESM-LE, this is not expected to be generally true

across all models (Seviour et al. 2018) as different

physical factors arise in controlling dynamical versus

hydrological-defined tropical edges (e.g., Davis and

Birner 2017).

Our best estimate of the ToE (circa 2058) is appre-

ciably later than that implied by Amaya et al. (2018)

based on their analysis of a single large model ensemble.

Amaya et al. state that a forced signal may already have

emerged above the noise in the Southern Hemisphere

but may require several more years to emerge in the

Northern Hemisphere. Our result indicates that several

more decades are likely necessary for the forced signal

to emerge above the noise (for the combined NH and

SH tropical width). While their approach contrasts in

several ways from our method making definitive com-

parisons difficult, we note that their study focused on a

leading internal mode of tropical edge variability using

a joint empirical orthogonal function (EOF). This single

mode explained only 49% of the total internal variance

in their model, and as such a comparison against the

forced signal might imply earlier detectability than

when considering the full internal variability, as as-

sessed herein.

Concerning the forced signal, our analysis has focused

on the so-called all-forcings experiments of the CMIP5

models, leaving open the question as to howmuch of the

time-evolving tropical widening may result from sensi-

tivity to particular forcings. While a comprehensive as-

sessment is beyond this paper’s scope, two additional

50-member ensembles of CanESM2 were diagnosed

that were subjected to only stratospheric ozone and an-

thropogenic aerosol variability, respectively. For tropical

width trends (P2E5 0) during 1980–2020, the effects of

these two factors were found to be small (not shown)
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when compared to the tropical width change associated

with full forcing, indicating the dominant effect of GHG

changes in the near term. On the longer 1980–2100 time

scale, a weak contraction of the tropical width was found

to occur in response to projected stratospheric ozone

change. This signal, however, was nearly an order of

magnitude weaker than that associated with full forcing

in CanESM2, suggesting that the tropical widening pro-

jected by the end of the twenty-first century is almost

entirely GHG driven. How these results might vary with

assumptions on the rate of ozone recovery and also may

depend on model sensitivities are each important issues

requiring further research before strong conclusions on

individual factors can be drawn.

The ToE estimates provided herein pertain to annu-

ally averaged conditions. The seasonality has not been

explored, though there are indications for seasonality in

anthropogenically forced tropical width change (e.g.,

Kang and Lu 2012; Vallis et al. 2015). Since the noise of

intrinsic variability is likely to also vary seasonally, it

remains to be determined how much the signal-to-noise

ratio (S/N) itself, and hence ToE, varies throughout

the year.

Given indications for hemispheric asymmetry in

tropical edge sensitivities to external radiative forcing

(e.g., Vallis et al. 2015; Amaya et al. 2018; Son et al.

2018), the ToE identified for total tropical width in our

study may not apply to either the Northern Hemisphere

(NH) or Southern Hemisphere (SH) individually. Cal-

culations of annual Hadley cell expansion during 2006–

75 within CMIP5 models indicates a stronger poleward

expansion in the SH (Vallis et al. 2015). Further, a NH

expansion appears less reproducible than a SH expan-

sion among samples of individual model simulations, a

distinction that appears to be independent of the nature

of external radiative forcing (e.g., Last Glacial Maxi-

mum to future climate experiments, transient 1%CO2

experiments, and CMIP3 and CMIP5 projections). Yet,

modeling studies also suggest that the internal noise of

NH tropical edge variability may be appreciably greater

from that occurring in the SH (Quan et al. 2014). It is

thus possible that a less robust signature of the signal in

NH tropical width change found in model experiments

may be in part due to larger sampling noise, rather than

being a symptom of weaker sensitivity alone. The extent

to which appreciable differences occur in the ToE for

tropical edge change in each hemisphere is thus a

question requiring further study.
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